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A Locally Conformed Finite-Difference
Time-Domain Algorithm of Modeling
Arbitrary Shape Planar Metal Strips

Jiayuan Fang, Member, IEEE, and Jishi Ren

Abstract—A general algorithm to model arbitrary shape planar
metal strips by the finite-difference time-domain (FDTD) method
is presented in this paper. With this method, fields in the entire
computation domain are computed by the regular FDTD algo-
rithm except those near metal strips where special techniques
proposed in this paper are applied. Unlike globally conformed
finite-difference algorithms, the computation efficiency of the
regular FDTD method is maintained while high space-resolution
is obtained by this locally conformed finite-difference method.
Numerical tests have verified that a higher computation accuracy
is achieved by this scheme than the conventionally used staircase
approximation. The modeling of electrical characteristics of two
crossed strip lines is provided as an example,

1. INTRODUCTION

HE finite-difference time-domain method has been ap-

plied to many electromagnetic problems in antennas,
scattering and microwave circuit components {1]-[3]. In deal-
ing with complex shape objects, where the boundaries of
objects do not coincide with finite-difference grid lines, the
staircase approximation is commonly used [3]. Due to the
low space resolution of the staircase approximation, a very
fine mesh has to be used to accurately represent object
geometries, which can easily result in an excessive requirement
of computer resources.

To overcome the difficulties in the staircase approximation,
finite-difference algorithms in nonorthogonal coordinates have
been proposed and applied to various problems [4]-[6]. With
nonorthogonal finite-difference algorithms, finite-difference
grids are conformed to surfaces of modeled objects in the
way similar to that in finite-element methods. Although the
resolution of surfaces of objects is significantly improved,
nonorthogonal finite-difference algorithms usually require
much longer computation times than the regular FDTD
algorithm for the same size of problems [6]. It is also very
challenging to generate grids in nonorthogonal coordinates for
three-dimensional complex shape objects.
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To maintain the computation efficiency of the original
FDTD method, instead of globally deforming the grid as
in nonorthogonal finite-difference algorithms, we propose a
locally conformed finite-difference algorithm for modeling
arbitrary shape planar metal strips. With this method, fields
in the whole computation domain are first computed by the
regular FDTD algorithm, fields near metal strips are then
corrected according to locations of metal edges in the finite-
difference mesh. The additional computation required in the
present method to correct fields near irregular shape objects
is only a small percentage of the overall computation still
dominated by the regular FDTD operations, while the same
improvement on the space-resolution is achieved by this
method as by the nonorthogonal finite-difference algorithms. It
will be shown that the numerical error, such as the artificially
slowed propagation speed in the staircase approximation [7],
can be substantially reduced by the present method.

The main idea of the locally conformed finite-difference
method presented in this paper is based on the integral form
of Maxwell’s equations. This approach has been applied
to model curved surfaces in two dimensional problems [8],
and conducting wires and strips which are parallel to finite-
difference grid lines in three dimensional problems [9]. In
this paper we will present a method of properly applying the
integral form of Maxwell’s equations for modeling arbitrary
shape planar metal strips in three dimensional problems.

II. LocALLY CONFORMED FINITE- DIFFERENCE ALGORITHM

The finite-difference time-domain method proposed by K. S.
Yee [1] is based on the discretization of Maxwell’s curl equa-
tions by the central-difference approximation in both space and
time. With given initial and boundary conditions, the electric
and magnetic field components are computed alternatively
in the leap-frog manner for some known source excitations.
When edges of metal strips are approximated by stair-stepped
boundaries, all field components are computed by the regular
FDTD algorithm except that the tangential electric and normal
magnetic field components on metal surfaces are set to zero.

The general procedure of computation by our locally con-
formed finite-difference algorithm consists of the following
steps for problems involving metal strips:

1. Calculate the electric field at time-step m in the entire

computation domain by the regular FDTD algorithm.

2. Set tangential electric field components at time-step n to

zero on surfaces of metal strips.
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Fig. 1. Metal strip on a finite-difference mesh.
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3. Calculate the magnetic field at time-step n + 1/2 in
the entire computation domain by the regular FDTD
algorithm.

4. Set normal magnetic field components at time-step n +
1/2 to zero on surfaces of metal strips.

5. Correct the electric field components at time-step n,
and the magnetic field components at time-step n + 1/2
around metal strips that can not be found by the reglilar
FDTD algorithm.

Steps 1 to 4 above are straightforward regular FDTD
computations. What needs to be explained is step 5 on the
correction of electric and magnetic fields near metal strips.

As shown in Fig. 1, suppose a metal strip of zero thickness
is placed on the z-y plane. The edge of the metal strip can
pass across the finite-difference mesh in many different ways,
resulting in different types of irregular elements near the
metal strip. Different types of elements may require different
correction procedures. When the angle between the edge of the
metal strip and the z axis is between 0° to 45°, all possible
cases of irregular elements are listed in Fig. 2 according to
positions of various field components near the metal strip.
It is generally sufficient to consider the computation of field
components for cases listed in Fig. 2 only. In case the angle
between the metal edge and the z axis is larger than 45°, the
angle between the metal edge and the y axis is then less than
45°, and therefore the technique of dealing with elements in
Fig. 2 can be applied accordingly by replacing the z axis in
Fig. 2 by the y axis.

For elements near metal strips listed in Fig. 2, field compo-
nents H,, Ey, E,, H, and H; need to be computed specially
when they can not be computed by the regular FDTD al-
gorithm. The sixteen types of elements in Fig. 2 can be
categorized to five groups, as listed in Table I, according
to their corresponding correction procedures of field compo-
nents. Next, we will discuss procedures of correcting field
components near metal strips for each group of elements.

Group A: The field components associated with this ele-
ment, which is redrawn in Fig. 3, that can not be found by
the regular FDTD algorithm are H,(,j, k), H,(3,J, k) and
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Fig. 2. (a) Finite-difference elements near metal strips. x H, nodes; — E;
nodes; T Ey nodes. (b) Finite-difference elements near metal strips. x H»
nodes; — Eg nodes; T Ey nodes.

TABLE I
CATEGORIZATION OF IRREGULAR ELEMENTS LISTED IN FiG. 2
Group A Group B Group C Groui) D Group E
Elements 1n (G (10),(11), (14),(15), 0,4 2),3),(5),

(12),(13) (16) (6),(7),(8)

Figure 2

H,(i,j,k — 1). Hy(i,5, k) is located half space-step above
Ey(i,j, k) in the z direction, and H(%, j, k—1) is located half
space-step below E, (3, §, k) in the z direction. The correction
procedure consists of following processes:

(a) Correcting Hr2(4, 4, k).

From Faraday’s law,

N 9 .
vdl=-u— | H
jélE dl M(?t A

where c; is the loop ABCDA shown in Fig. 3, and s; is
the area enclosed by loop c;. Discretizing (1) results in the
following difference equation for computing H,(i,7,k) at
time-step n + 1/2.

.dS, 1)

/2,5, k) = H2 =20, ,k) - -
us1
[~Ey (6, 5,k) - las + B3 (6,5, k)

-dh+ Ey(i+1,4,k) - lop] (2

where dt is the time-step, dh is the space-step of the finite-
difference grid, Iap and lop are the lengths of sides AB and
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Fig. 3. An element of group A.

CD. The electric field component along the metal edge is
assumed to be zero.

(b) Correcting H2T/2(3, 4, k) and HoTY2(3, 4,k — 1).

The finite-difference algorithms for computing H +1/2 G,7,k
and HZH/Q(i,j, k — 1) need to be modified from the regular
FDTD algorithms by taking into account that Fj (3,7, k) is
nonzero only across the length [5p. The modified difference
equations for computing H§+1/2(i,j, k) and H§+1/2(z’,j, k-
1) are:

HM 23,5, k)

dt l
n-—1/2¢, _ n . . AB
e A~
+E?(Zv]+13k)_E;(va7k+l)_EZ(IL)JJ{;)]v(3)

HMY2(4, 4,k — 1)

dt
— n._l/z . . Rk nes - _
= Hp 7 V/*(i,5,k—1) ,u~dhlEy(Z’j’k 1)
l
+E2(i,j + 1, k—=1)—EJ(i,5,k) -2
dh
- E?(i7jak—' 1)] 4

In the term lag/dh = 1, (3) and (4) will become the
regular FDTD equations for computing H ot/ 2(z J,k) and
H”+1/2( ,J,k — 1). In dealing with the element in Fig. 3,
there is no need to correct Hy " /2(i+1, j, k) and He /% (i +
1,5,k — 1) located half space-step above and below E,(i +
1,4,k) in the z direction, because these components will be
taken care of when the neighboring element at the right is
being processed.

Group B: A typical element of this group is drawn in
Fig. 4. The field components need to be corrected are
Hz(i’ja k)vE:v(Zv.] + 17 A)aHy(Zm? + 17 k)v Hy(z7.7 + 17 k-
1), Hy(4,5. k) and H,(4, 5,k — 1). Hy(4,7 + 1,k) is located
half space-step above FE.(¢,5 + 1,k) in the z direction,
and Hy(4,5 + 1,k — 1) is located half space-step below
E, (4,7 + 1,k) in the z direction. The correction procedure
of this group of elements is described below:

(a) Correcting H2'/%(3, 5, k).

»

1

" CExa+1.k)

Yy  Eyaiot X 4EYGHLIKY
Hz(i,j.k)
B R c
X Ex(i,j,k)

Fig. 4. An element of group B.

7+1/2(; j k) is computed in the same way as that for

group A clements. Faraday’s law is applied along the loop
ABCDA denoted in Fig. 4, resulting in (2) for computing

n+1/2,. .

z (Z> .7 3 k ) .

(b) Correcting E2(i,7 + 1, k).

The location of the node of F,(i,j+ 1, k) is assumed to be
at the point F in Fig. 4, which is at the middle of the side EG.
E”(i,j + 1,k) is calculated by making use of the corrected
value of H; +1/ 2(z’, j, k) obtained in process (a) above. From
Faraday’s law expressed in (1), replacing ¢; and s; in (1) by
cg and sg, where ¢z is the loop ABCEFGA and s3 is the area
enclosed by loop co, the difference equation for correcting
E%(i,j + 1,k) is obtained as

Ey(i,7+1,k)
1
= —[Ep(i,5,k)-dh + Ej(i+1,4,k) - dh

Iec
e - S n+1/2 ..
_Ey ('Lajvk) 'lAB]+ dtlEG [Hz (Zvj,k)
- H:_1/2(7;,j, k)] (5)

() Correcting Hy (i, j+1,k) and H} " /2(i, j+1, k—1)

With the newly corrected EZ(¢,7 + 1,k) in process (b).

H) Y20 541, k) and Hy P23, 5+1, k — 1) are computed
by the modified FDTD algorithms, that take into account that
E?(i,7 + 1,k) is nonzero only across the length Igg. This
is evident in equations (6) and (7), which are shown at the
bottom of the next page.

(d) Correcting H"+1/2(z J, k) and Hn+l/2( i,5,k—1)

H2™2(i, 5. k) and Hy™/2(4, 5, k— 1) are computed in the
same way as group A elements by (3) and (4) respectively.

Group C: The field components need to be corrected for
this group of elements are H,(z' 5. k), Ex(3,5+1,k), Hy (4, 5+
1,k), Hy(i,j+1,k—1), H. (3, j+1,k) and H, (3, 5+1,k—1).
A typical element of this group is drawn in Fig. 5. The
correction procedure of this group of elements is:

(a) Correcting H2+1/2(i,j, k) by (2) where s; is the area
enclosed by the loop ABCDA.

(b) Correcting E7 (3,5 + 1,k). E?(4,5 + 1, k) is computed
in the same way as that for group B elements, except that



FANG AND REN: LOCALLY CONFORMED FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM

833

ﬂ D
A ExG+1,k)
G 4 E
y EyGiotd X AEyG+Lik)
Hz(,j.k)
B R c
X Ex(i,j,k)

Fig. 5. An element of group C.

the loop ¢ (GBCEFG) encloses a rectangle formed by finite-
difference grid lines. The difference equation for correcting
E2(i,5 + 1,k) is therefore:
E7(i,j +1,k)
= Ep(,5,k)+ By +1,5,k) — E}(i,j, k)

- dh (HH2(i,5,k) — HP Y26, 4, k).

7

®)
(c) Correcting Hr™Y/%(4,j+1,k) and HIVY2(5, 5+ 1,k ~
1).
HyM2(i,j+1,k) and HYP2(i, j+1, k—1) are computed
with the newly corrected E?(i, 7 + 1, %) in process (b). Their
difference equations are:
+1/2¢; &
HYY2(i,5 4 1,k)
—1/2 b ...
H;l 1/2(23] + lak) - M[Em(za] + 17k + 1)
~BPG+ 1,5+ 1K)~ B2, +1,k)
HYY2(5,5+ 1,k — 1)

dt
— n—1/2 P _ e "y - 1 k
Hy= 50,0+ Lk = 1) = = B (. + 1, F)
—EXGE+L i+ L= - Ep(ij+ 1k~ 1)
+ E7(i,5+1,k—=1)]. (10)

(d) Correcting H2Y/%(i,j+1,k) and HRTY2(5,5+1,k -
1)

N N N
1 y .
N
\ <
\ 2
Y\ A HzGjK [
I—_AEY(i,',k) 1
B c
X Ex(.6)

Fig. 6. An element of group D.

The FDTD algorithms of computing Hy +/ 2(2’, j+1,k) and
oty ?(i,j + 1,k — 1) are modified by taking into account
that I, is nonzero only along the side AG. Let the value of
E, along side AG be approximated by Ey(¢, 7, k), and stored
at the node of E,(¢,5 + 1,k). The difference equations for

. n+1/2,. . n+1/2,. .
computing H (1,7 + 1,k) and Hg (., +1L,k-1)
become (11) and (12) at the bottom of the next page.

Group D: Consider a typical element of this group shown
in Fig. 6. The procedure of computing field components,
H,(i,5,k), Hp(i,7+ 1,k) and H,(i,j + 1,k — 1), associated
with this group of elements is explained as follows:

(a) Correcting H?‘H/Z(i,j, k).

HZYY2(i 4 k) is computed by (2) where E}(i,j, k) rep-
resents E, along side AB in Fig. 6. EJ (4,5, k) can not be
obtained by the regular FDTD algorithm for this group of
elements, and is approximated by Ep(i,j ~ 1, k).

(b) Correcting Hi™Y/%(i, j, k) and HeT/?(3,5,k — 1) by
(3) and (4) respectively. Again, Eg(z, J,k) in (3) and (4) is
approximated by E7(i,j — 1,k)

Group E: Consider a typical element of this group shown
in Fig. 7. The valuer of E(i, j, k) located at the middle of side
AB is approximated by that of £} (i, — 1, k). The procedure
of correcting the rest of field components is:

() Correcting H™Y/ 2(i,5,k) by (2). (b) Correcting
E™i,j + 1,k) by (5). (¢) Correcting Hr Y/2(i,j + 1,k)
and H;H/Q(i,j + 1,k — 1) by (6) and (7) respectively. (d)
Correcting H2Y2(i, §,k) and H2Y2(3, 5,k — 1) by (3) and
(4) respectively.

dt .
HPPY2(4,5 4+ 1,k) = Hy Y2(5,5 4+ 1,k) — dh [E;‘(Z,J +1,.k+1)
l .
_E?(7’+17.7+1ak)"E;:l(%.]""lak) EE—)}SE_I" Eg(zuj+lak):lu (6)
.. dt . g
n+1/2/;: - — 1)~ gr-1/2 1) n RIS
Hy ™26, 5+ Lk—1)= Hy /24,5 + Lk —1) u-dh[E’”(Z’j+1’k) h

—E?(i+1,j+1,k—1)—E;l(i,j+l,k—1)+Ez"(i,j+1,k—-1)]. @)
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Fig. 7. An element of group E.

The procedures discussed above of correcting field compo-
nents near metal strips for different groups of elements are
summarized in Table IL.

III. TESTS ON THE LOCALLY CONFORMED
FINITE- DIFFERENCE ALGORITHM

The locally conformed finite-difference algorithm, presented
in the last section, can be tested by applying it to model a pulse
propagation through a strip-line shown in Fig. 8. The strip
line is oriented in an angle ¢ with the x axis and surrounded
by a dielectric medium of ¢, = 4. The separation between
two perfectly conducting reference planes is 1 mm. The metal
strip is 0.4 mm above the lower reference plane. A uniform
finite-difference mesh of equal space steps in the z,y and z
directions is chosen for the computation. The space-step dh
is 0.2 mm, and the time-step dt is 0.5 dh/v, where v is the
speed of light in the medium. The width of the strip in the y
direction Wy, is chosen as 0.8 mm = 4 dh. The actual width
of the strip is W, - cos 8.

Fig. 9 illustrates the staircase approximation of a strip line
tilted from the x axis by an angle § = tan™! (1/3) = 18.4°.
It has been found that, due to the staircase approximation, a
wave propagating along the conducting surface is artificially
slowed down [7]. An alternative description of the numerical
propagation speed along the strip line of Fig. 8 is the effective
dielectric constant .o which can be obtained from the
transient solutions of fields along the strip line [2]. Suppose u
and u+ L are two positions separated by a distance L along the
strip line. E(u.t) and E(u + L,t) are numerically computed

transient electric fields at the position » and « + L. Denote
the Fourier transforms of E(u,t) and E(u + L,t) as F(u,w)
and E(u + L,w) respectively. For a wave propagating in the
positive u direction, E(u,w) and F(u + L,w) are related by

E(u+ L,w) = E(u, w)e_"Y(“’)L, (13)
where

V(W) = a(w) +jB(w) (14)

is the propagation constant. The effective dielectric constant
€reff 18 defined as

Bw) = wy/Heaered. (15)

From (13) to (15), the effective dielectric constant e,.g can
be found from
3 1 1 2
A S il In | —222%
Wiueg | wiueg | L8| E(u+ L,w)
(16)

Ereff =

where Image is the operator of taking the imaginary part of
a complex number.

Since the strip line in Fig. 8 is surrounded by the uniform
dielectric medium of ¢. = 4, the effective dielectric constant
€regr should be the same as €,. However, the numerically com-
puted effective dielectric constant €, obtained by modeling
a pulse propagation through a strip line is somewhat different
from ¢,, due to the computation error of the numerical scheme
being used. The dashed curves in Fig. 10 are the computed
effective dielectric constants of the strip line modeled by the
staircase approximation for § = 45°,26.6° (= tan~! (1/2)),
18.4° (= tan™! (1/3)), 14.0° (= tan™' (1/4)) and 11.3° (=
tan~! (1/5)). The reason for choosing these particular angles
of § is for the convenience of the staircase approximation of
oblique strip lines as shown in Fig. 9. As can be seen from
Fig. 10, €, s obtained by the staircase approximation are all
larger than the accurate solution of 4.0, representing slowed
propagation speeds due to the numerical computation error,
and the largest numerical error appears when 6 = 45°,

The effective dielectric constants of the strip line approxi-
mated by the locally conformed finite-difference algorithm of
this paper are also shown in Fig. 10 by solid curves. It is
seen that errors in the effective dielectric constants computed
by the locally conformed finite-difference algorithm are about
60% to 70% smaller than those computed by the staircase
approximation for the angles of # chosen.

As a comparison, a locally conformed finite-difference
algorithm based on a scheme in [8] is also tested. This scheme

dt l

HrHY20 2401 k) = H1/2(; 5 k) — (s s | YAG

;7 (7'7.]+ ’ ) x (Z7]+1 k) /th[Ey(Z’J—*_l’k) dh
+E?(’i,j+2,k‘)—Eg(i,j—{—1,/€+1)—E’Z(i,j+1,k)], (11)

dt
n+1/27. - —gn=1/27. . N
HEY2(5, 5+ 1,k —1) = H” /(z,]+1,k—1)—m[Ey(z,j+l,k—1)
. . ) .

+EMG G+ 2,k —1) = EM6, G+ 1,k) - 22 _Eri, i+ 1,k — 1), (12)

dh
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COMPUTATION OF FIELD COMPONENTS NEAR METAL STRIPS
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e Te——
Field components Group A
to be corrected
Eyn(i’j 9k) — e ——— Ey"(i,j'l ’k) Eyn(i’j'l )k)
H* 123 k) equation (2) | equation (2) | equation (2) equation (2) equation (2)
EXG,j+1,k) — equation (5) | equation (8) —m equation (5)
H (3, + 1,k) equations equations equations
and — (6) and (7) (9) and (10) —_— (6) and (7)
H 23,5+ 1,k-1)
H2*13(,),k) equations equations equations equations
~and () and (4) (3) and 4) _— (3) and (4) (3) and (4)
Hxn+l/2(i’j,k_1)
E"(i,j+1,k) — — E,"(i,j,k) — —_—
H2(3,j+ 1,k) equations
and — — (11) and (12) —_ -_
L=Hxn+”2(i9j + 1’k°1)
Z 46 -
£ 45 R e -
§ 4.4 F ————————————————— 26.6:
Sl CCITIIITIITII - e
8 Lo oo e
E sz 26.6°
B oaf 1500
Reference Planes F 11
Fig. 8. Structure of a strip line tilted by an angle  from the ac( axis. d1 = 0.6 +0 0 5I 1I° ;; 2‘0 2I5 *"0
mm, d2 = 0.4 mm, Wy = 0.8 mm. f (GHz)

N

Fig. 9. The staircase approximation of a strip line.

is called the “nearest neighbor approximation™ in [8]. With this
method applied to the strip line in Fig. 8, the irregular electric
field components. around the metal strip are approximated by
their nearest neighbors of the same field components, and the

Fig. 10. Effective dielectric constants of a strip line computed by the stair-
case approximation (dashed curves) and the locally conformed finite-difference
method of this paper (solid curves). The strip line is along the direction of
an angle 6 with the x axis.

irregular magnetic field components are calculated by applying
the Faraday’s law. The effective dielectric constant e, (f) of
the strip line computed by the “nearest neighbor approxima-
tion” are shown in Fig. 11 together with those obtained by
the staircase approximation. It appears that an improvement
on computation accuracy can also be made by the “nearest
neighbor approximation,” but not as much as that by the locally
conformed finite-difference method of this paper.

IV. NUMERICAL EXAMPLE

An example to illustrate the application of the locally
conformed finite-difference algorithm for modeling microwave
circuits is shown in Fig. 12. In this example, two strip lines are
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Fig. 11. Effective dielectric constants of a strip line computed by the stair-
case approximation (dashed curves) and the “nearest neighbor approximation”
(solid curves). The strip line is along the direction of an angle 6 with the 2
axis.

Reference Planes

Fig. 12. Structure of two crossed strip lines.

crossed over each other with an angle §. The distance between
two ground planes is 0.9 mm. Three layers of dielectrics
between ground planes are all of thickness 0.3 mm and €, = 4.
The space-step dh of the uniform finite-difference mesh is 0.1
mm. The time-step d¢ is chosen as 0.5 dh/v. Both metal strips
are of width W = 0.4 mm.

Apparently, for such structures as the ones shown in Fig.
12, the staircase approximation results in very poor resolutions
of circuit geometries. By the application of the locally con-
formed finite-difference method, the numerical analysis of the
dependence of the characteristics of the crossed strip lines on
various parameters, such as the crossing angle 6 and strip-line
dimensions, becomes readily feasible.

The electrical properties of the two crossed strip lines are
obtained by the numerical simulation of a pulse propagation
through the structure. Let a Gaussian pulse propagate into the
structure from port 1. The frequency dependent S parameters
of the structure are found by taking Fourier transforms of the
reflected, transmitted and coupled waves. Fig. 13 shows the
coupling coefficients S13 and S14 in the frequency range f = 0
to 15 GHz, as 6 changes from 0° to 45° with a 5° interval.
It is seen that, as expected, Si3 increases with increasing 6,
while S74 decreases with increasing 6. Both Si3 and Sy4
increase with frequency in the frequency range of Fig. 13. An
alternative presentation of S13 and Si4 is shown in Fig. 14,
where Si3 and Sy4 at various frequencies are plotted as a

0.25

0.20 | s13

015 |

0.10 | S14

S$13 and S14

005 |

000 .

f (GHz)

Fig.

S§13 and S14

8 (degree)

Fig. 14. Coupling coefficients (S13 and S14) between two crossed strip
lines. Solid curves: Sy3; Dashed curves: Sy4.

function of the crossing angle 6.

S parameters obtained above can be post-processed to
extract equivalent circuit parameters of the crossed strip-lines.
For the equivalent circuit model consisted of capacitors C,, C,
and mutual inductor M shown in Fig. 15, it can be derived
that

S13 — S1a

MGy = - ,
07 j2rf(1 - 811 + S12)

a7

where Gy is the characteristic admittance of the stip line, and

1—5811 ~ 512 = 813 — 514
j27‘l’f(512 -+ 514)(1 + jzﬂfMGo)’
CcZO — 1- Sll ~ S12 — j271'f(512 +j27rfMG0514)CaZ0

J2m f(S12 — S14)(1 — j2n fMGy) ’
(19)

CaZO = (18)

where Z; is the characteristic impedance of the strip line.
Values of C.Zy,C,Zy and MGy as a function of frequency
for different crossing angles are displayed in Figs. 16, 17,
and Fig. 18 respectively. The equivalent circuit model thus
obtained can be used in computer-aided design tools to analyze
crosstalk between strip lines with different terminations.
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Fig. 15. The equivalent circuit of the crossed strip lines in Fig. 12.
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Fig. 16. Normalized equivalent capacitance C.Zg of the crossed strip lines

in Fig. 12 as a function of frequency. The crossing angle 6 changes from 0°
to 45° with 5° interval,
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Fig. 17. Normalized equivalent capacitance Cqa Zg of the crossed strip lines
in Fig. 12 as a function of frequency. The crossing angle & changes from 0°
to 45° with 5° interval.

Strip-line crossings appear frequently in microwave circuits,
but few results are available in present literatures on detailed
analysis and modeling of strip-lines crossed with arbitrary
angles. Although the computation results in Figs. 13-18 are
believed to be highly reliable, they are subject to be compared
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Fig. 18. Normalized equivalent inductance M Gyg of the crossed strip lines
in Fig. 12 as a function of frequency. The crossing angle § changes from 0°
to 45° with 5° interval.

with the results obtained by other numerical or experimental
techniques.

V. CONCLUSION

A locally conformed finite-difference scheme is proposed in
this paper to model arbitrary shape planar metal strips. This
method is computationally more efficient than the globally
conformed finite-difference schemes. Besides the high space-
resolution of this method, it is also shown to be much more
accurate than the staircase approximation. This method can
be applied to various microwave planar circuits of complex
shapes.
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