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A Locally Conformed Finite-Difference

Time-Domain Algorithm of Modeling

Arbitrary Shape Planar Metal Strips
Jiayuan Fang, Member, IEEE, and Jishi Ren

Abstract-A general algorithm to model arbitrary shape planar
metal strips by the finite-difference time-domain (FDTD) method
is presented in this paper. With this method, fields in the entire

computation domain are computed by the regular FDTD algo-
rithm except those near metal strips where special techniques

proposed in this paper are applied. Unlike globally conformed

finite-difference algorithms, the computation efficiency of the

regular FDTD method is maintained while high space-resolution

is obtained by this locally conformed finite-difference method.

Numerical tests have verified that a higher computation accuracy
is achieved by this scheme than the conventionally used staircase
approximation. The modeling of electrical characteristics of two
crossed strip lines is provided as an example.

I. INTRODUCTION

T HE finite-difference time-domain method has been ap-

plied to many electromagnetic problems in antennas,

scattering and microwave circuit components [1 ]–[3]. In deal-

ing with complex shape objects, where the boundaries of

objects do not coincide with finite-difference grid lines, the

staircase approximation is commonly used [3]. Due to the

low space resolution of the staircase approximation, a very

fine mesh has to be used to accurately represent object

geometries, which can easily result in an excessive requirement

of computer resources.

To overcome the difficulties in the staircase approximation,

finite-difference algorithms in nonorthogonal coordinates have

been proposed and applied to various problems [4]-[6]. With

nonorthogonal finite-difference algorithms, finite-difference

grids are conformed to surfaces of modeled objects in the

way similar to that in finite-element methods. Although the

resolution of surfaces of objects is significantly improved,

nonorthogonal finite-difference algorithms usually require

much longer computation times than the regular FDTD

algorithm for the same size of problems [6]. It is also very

challenging to generate grids in nonorthogonal coordinates for
three-dimensional complex shape objects.
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To maintain the computation efficiency of the original

FDTD method, instead of globally deforming the grid as

in nonorthogonal finite-difference algorithms, we propose a

locally conformed finite-difference algorithm for modeling

arbitrary shape planar metal strips. With this method, fields

in the whole computation domain are first computed by the

regular FDTD algorithm, fields near metal strips are then

corrected according to locations of metal edges in the finite-

difference mesh. The additional computation required in the

present method to correct fields near irregular shape objects

is only a small percentage of the overall computation still

dominated by the regular FDTD operations, while the same

improvement on the space-resolution is achieved by this

method as by the nonorthogonal finite-difference algorithms. It

will be shown that the numerical error, such as the artificially

slowed propagation speed in the staircase approximation [7],

cart be substantially reduced by the present method.

The main idea of the locally conformed finite-difference

method presented in this paper is based on the integral form

of Maxwell’s equations. This approach has been applied

to model curved surfaces in two dimensional problems [8],

and conducting wires and strips which are parallel to finite-

difference grid lines in three dimensional problems [9]. In

this paper we will present a method of properly applying the

integraJ form of Maxwell’s equations for modeling arbitrary

shape planar metal strips in three dimensional problems.

II. LOCALLY CONFORMED FINITE- DIFFERENCE ALGORITHM

The finite-difference time-domain method proposed by K. S.

Yee [1] is based on the discretization of Maxwell’s curl equa-

tions by the central-difference approximation in both space and

time. With given initial and boundary conditions, the electric

and magnetic field components are computed alternatively

in the leap-frog manner for some known source excitations.

When edges of metal strips are approximated by stair-stepped

boundaries, all field components are computed by the regular

FDTD algorithm except that the tangential electric and normal

magnetic field components on metal surfaces are set to zero.

The general procedure of computation by our locally con-

formed finite-difference algorithm consists of the following

steps for problems involving metal strips:

1. Calculate the electric field at time-step n in the entire

computation domain by the regular FDTD algorithm.

2. Set tangential electric field components at time-step n to

zero on surfaces of metal strips.
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1. Metal strip on a finite-difference mesh. x H= nodes;
+ Ez nodes; T -EV nodes.

Calculate the magnetic field at time-step n + 1/2 in

the entire computation domain by the regular FDTD

algorithm.

Set normal magnetic field components at time-step n +

1/2 to zero on surfaces of metal strips.

Correct the electric field components at time-step n,

and the magnetic field components at time-step n + 1/2

around metal strips that can not be found by the regular

FDTD algorithm.

Steps 1 to 4 above are straightforward regular FDTD

computations. What needs to be explained is step 5 on the

correction of electric and magnetic fields near metal strips.

As shown in Fig. 1, suppose a metal strip of zero thickness

is placed on the z-y plane. The edge of the metal strip can

pass across the finite-difference mesh in many different ways,

resulting in different types of irregulzu elements near the

metal strip. Different types of elements may require different

correction procedures. When the angle between the edge of the

metal strip and the z axis is between 0° to 45°, all possible

cases of irregular elements are listed in Fig. 2 according to

positions of various field components near the metal strip,

It is generally sufficient to consider the computation of field

components for cases listed in Fig. 2 only, In case the angle

between the metal edge and the x axis is larger than 45°, the

angle between the metal edge and the g axis is then less than

45°, and therefore the technique of dealing with elements in

Fig. 2 can be applied accordingly by replacing the x axis in

Fig. 2 by the y axis.

For elements near metal strips listed in Fig. 2, field compo-

nents Hz, Eg, Ec, Hy and Hz need to be computed specially

when they can not be computed by the regular FDTD al-

gorithm. The sixteen types of elements in Fig. 2 can be

categorized to five groups, as listed in Table I, according

to their corresponding correction procedures of field compo-

nents. Next, we will discuss procedures of correcting field

components near metal strips for each group of elements.

Group A: The field components associated with this ele-

ment, which is redrawn in Fig. 3, that can not be found by

the regular FDTD algorithm are Hz (i, j, k), IIm (z, j, k) and

&&Ha
(1) (2) (3) (4)

~@@$ ? ~i!!T

x (5) (6I m (8)

(a)

(9) (lo) (11) (12)

pERPR7T
x (13) (14) (15) (16)

(b)

Fig. 2. (a) Finite-difference elements near metat strips. x H, nodes; - Et
nodes; ~ Ev nodes. (b) Fhite-dMerence elements nem metal strips. x H,
nodes; ~ EC nottex T Ey nodes.

TABLE I

CATEGORIZATIONOF IRRSGULAR ELEMENTS LISTED m FIG. 2

Group A GroupB Group C Group D

~ ~ ,B

GrouPE

ElementsIn (9) (10),(11), (14),(15), (1),(4) (2),(3),(5),
Figure2 (12),(S3) (16) (6),(7),(8)

Hz (i, j, k – 1). Hz (i, j, k) is located half space-step above
Ev(i, j, k) in the z direction, and Hz(i, j, k – 1) is located half

space-step below J?3v(i, j, k) in the z direction. The correction

procedure consists of following processes:

(a) Correcting X+l’2(i, j, k).

From Faraday’s law,

! E . di= –/4; Jfi.d$,
c1 81

(1)

where c1 is the loop ABCDA shown in Fig. 3, and s1 is

the area enclosed by loop c1. Discretizing (1) results in the

following difference equation for computing Hz (i, j, k) at

time-step n + 1/2.

-w(ij, ~) - xi.-H;+1i2(i, j, k) = Hz
/.Lsl

. [-E;(i, j, k) . Z*B + ~~(i,j, k)

.dh+E;(i +1, j,k). zcD] (2)

where dt is the time-step, dh is the space-step of the finite-

difference grid, lAB and lcD are the lengths of sides AB and
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1’‘Yo’i’k)l‘i-k)I’yo+’”k)
Fig. 3. An element of group A

CD. The electric field component along the metal edge is

assumed to be zero.

(b) Correcting lfS+l’2(i, j, k) and H~+l’2(i, j, k – 1).

The finite-difference algorithms for computing H~+l’2 (i, j,k)

‘+li2(i, j, k - 1) need to be modified from the regularand Hz

FDTD algorithms by taking into account that E; (i, j, k) is

nonzero only across the length iAB. The modified difference

‘+ ’12(i,j, k) and ll~+lj2(i,j, k -equations for computing Ifz

1) are:

H:+l/2(z, j, k)

1+E;(z, j+l, k)–E;(i, j,k+l)– E&(i, j,k) , (3)

H:+lqi,j, k – 1)

.

[
Hy(i,jjk -1) - A E;(i,j, k -1)

+E;(i, j+ l,k–l)–E;(i, j,k) .*

1–q?(i, j,k– 1) . (4)

In the term iAB/dh = 1, (3) and (4) will become the

‘+1/2(z, j, k) andregular FDTD equations for computing Hz

Hl+l’2(i, j, k – 1).In dealing with the element in Fig. 3,

there is no need to correct H~+l’2(i+ 1, j, k) and H~+l’2(i+

1, j, k – 1) located half space-step above and below Ey (i +

1, j, k) in the z direction, because these components will be

taken care of when the neighboring element at the right is

being processed.

Group B: A typical element of this group is drawn in
Fig. 4. The field components need to be corrected are

H.(Z,j,k), EZ(Z,j + l,k), HY(z, j + l,k), HV(i, j + l,k –

l), HZ(Z, j,k) and Hz(i, j,k – l). fIY(z, j + l,k) is located

half space-step above 13Z(Z,j + 1, k) in the .z direction,

and Hv (i, j + 1, k – 1) is located half space-step below

E. (i, j + 1, k) in the z direction. The correction procedure
of this group of elements is described below:

(a) Correcting H~+112(i, j, k).

Fig. 4. An element of group B.

H~+li2(i, j, k) is computed in the same way as that for

group A elements. Faraday’s law is applied along the loop

ABCDA denoted in Fig. 4, resulting in (2) for computing

H$+l/2(i, j,k).

(b) Correcting E;(i, j + 1, k).

The location of the node of ~. (i, j +1, k) is assumed to be

at the point F in Fig. 4, which is at the middle of the side EG.
E;(i, j + 1,k) is calculated by making use of the corrected

‘+1/2(i, j, k) obtained in process (a) above. Fromvalue of Hz

Faraday’s law expressed in (l), replacing c1 and SI in (1) by

C2 and S2, where C2 is the loop ABCEFGA and S2 is the area

enclosed by loop C2, the difference equation for correcting
E:(i, j + 1, k) is obtained as

E;(i, j + l,k)

— &[E;(i, j,k) . dh + E;(i + l,j,k).dh

‘s2 [H;+l/2(~,j, ~)– E~(i, j, k) . lAB] + —
dt . lEG

- H;-’i2(i,j, k)]. (5)

‘+1/2 (i,j+l, k) and H~+’12(i,j+l, k–l)(c) Correcting H,

With the newly corrected Es (i, j + 1, k) in process (b),

‘+l/2(i,j + 1, k – 1) are computedH~+1’2(i, j + 1, k) and Hv

by the modified FDTD algorithms, that take into account that

E#(i, j + 1, k) is nonzero only across the length lEG. This
is evident in equations (6) and (7), which are shown at the

bottom of the next page.

‘+112(i,j, k) and lf~+’f’(i,j, k - 1)(d) Correcting Hz

‘+1i2(i, j, k – 1) are computed in theH~+l’2(i, j, k) and Hz

same way as group A elements by (3) and (4) respectively.

Group C: The field components need to be corrected for
this group of elements are llz(i, j, k), EZ(Z, ~+l, k), Hg(i, j+

l,k),17V(i, j+l, k-l),lf~(i, j+l, k)and H. Ji, j+l, k-l).
A typical element of this group is drawn in Fig. 5. The

correction procedure of this group of elements is:

(a) Correcting H~+l/2 (i, j, k) by (2) where SI is the area

enclosed by the loop ABCDA.

(b) Correcting E~(i, j + 1, k). E~(i, j + 1, k) is computed

in the same way as that for group B elements, except that



FANG AND REN: LOCALLY CONFORMED FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM 833

Ey(i,j,k)

t
x

t
Ey(i+l,j,k)

;
Hz(i,j.k)

Fig. 5. An element of group C.

the loop C2 (GBCEFG) encloses a rectangle formed by finite-

difference grid lines. The difference equation for correcting
E:(z, j + 1, k) is therefore:

qi,j+l, k)

= E:(i, j,k) -t- E;(i + l,j, k) - q(i,j, k)

+ P “ ~~ n+l/2(~ j,@ – q-m(i j, k)].
--@l= , >

(8)

‘+li2(i, j+l, k) and If;+1’2(i,.j+l, k-(c) Correcting Ifv

1).

H;+l’2 (i,j+l, k)and Hy‘+112 (i, j+l, k–l) are computed

with the newly corrected -E; (i, j + 1, k) in process (b). Their

difference equations are:

H;+l/2(i, j + 1, k)

—— H;-1i2(i,j + l,k) - ##;(i,j + l,k + 1)

–.E;(2+ l,j+l, k)- E:(i, j+l, k)

+E;(z, j+l, k)], (9)

H;+l/Z(z,j + l,k – 1)

—. If-w,j + l,k - 1) - %[E:(i,j + l,k)

–E;(i+l, j+l, k–l)– E:(i, j+l, k– 1)

+E:(z, j+ l,k – l)]. (lo)

(d) Correcting 17~+1/2(i, j + 1, k) and H~+1’2(z, j + 1, k –

1)

L---.+)( Exi,j,k)

Fig. 6. An element of group D.

The FDTD algorithms of computing Hz‘+1i2(i, j+l, k) and

Hn+l’2(i j + 1, k – 1) are modified by taking into accountz

that Eg is’ nonzero only along the side AG. Let the value of

Ev along side AG be approximated by Eg (i, j, k), and stored

at the node of Eg (z, j + 1, k). The difference equations for

‘+ ’/2(i, j + l,k) and H;+1\2(i, j + l,k - 1)computing Hz

become (11) and (12) at the bottom of the next page.

Group D: Consider a typical element of this group shown

in Fig. 6. The procedure of computing field components,

~,(i,.1, k), H~(i,j + 1, k) and Hx(i,.j + 1, k – 1), associated
with this group of elements is explained as follows:

(a) Correcting H~+1J2(z, j, k).

Hfi+l/2(z,j, k) is computed by (2) where E~(i, j, k) rep-.z
resents Ev along side AB in Fig. 6. E; (i, j, k) can not be

obtained by the regular FDTR algorithm for this group of

elements, and is approximated by E: (z, j -1, k).

(b) Correcting Ha‘+1/2 (i,j, k) and H$+li2(z, j, k - 1) by

(3) and (4) respectively. Again, E~(i, j, k) in (3) and (4) is

approximated by E$ (i, j – 1,k)

Group E: Consider a typical element of this group shown

in Fig. 7. The valuer of E; (i, j, k) located at the middle of side

AB is approximated by that of E; (i, j – 1, k). The procedure

of correcting the rest of field components is:

‘+lf2(i, j, k) by (2). (b) Correcting(a) Correcting H,

~+1/2(i,j -t- 1, k)E~(i, j + 1, k) by (5). (c) correcting &

‘+’/2(i, j + 1, k - 1) by (6) and (7) respectively. (d)and Hv

Correcting Hz‘+1i2(i, j, k) and H~+l/2(i,j, k – 1) by (3) and

(4) respectively.

dt
H~+112(z, j + 1, k) = H;-1i2(i, j + 1, k) – —

[
E~(i, j+ l,k+ 1)

p.dh

1-E:(i+l, j’+l, k)- E:(i, j+l, k). $+ E:(i, j+l, k) , (6)

dt
H;+l/2(i, j+ 1,/%–1) = H;-112(i, j+ l,k– 1) – —

[
E:(i, j+ l,k) . g

p.dh

1–E;(z+l, j+l, k–l)– E;(i, j+l, k–l)+E;(i, j+l, k–1) . (7)
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Fig. 7. An element of group E.

The procedures discussed above of correcting field compo-

nents near metal strips for different groups of elements are

summarized in Table II.

III. TESTS ON THE LOCALLY CONFORMED

FINITE- DIFFERENCE ALGORITHM

The locally conformed finite-difference algorithm, presented

in the last section, can be tested by applying it to model a pulse

propagation through a strip-line shown in Fig. 8. The strip

line is oriented in an angle 9 with the x axis and surrounded

by a dielectric medium of Cr = 4. The separation between

two perfectly conducting reference planes is 1 mm. The metal

strip is 0.4 mm above the lower reference plane. A uniform

finite-difference mesh of equal space steps in the z, y and z

directions is chosen for the computation. The space-step dh

is 0.2 mm, and the time-step dt is 0.5 dh/v, where v is the

speed of light in the medium. The width of the strip in the y

direction W’v is chosen as 0.8 mm = 4 dh. The actual width

of the strip is W~ . cos O.

Fig. 9 illustrates the staircase approximation of a strip line

tilted from the z axis by an angle O = tan– 1 (1/3) = 18.4°.

It has been found that, due to the staircase approximation, a

wave propagating along the conducting surface is artificially

slowed down [7]. An alternative description of the numerical

propagation speed along the strip line of Fig. 8 is the effective

dielectric constant Er.ff which can be obtained from the

transient solutions of fields along the strip line [2]. Suppose u

and u+ L are two positions separated by a distance L along the

strip line. El(u, t) and E(u + L, t) are numerically computed

transient electric fields at the position u and u + L. Denote

the Fourier transforms of 17(u, t) and E(u + L, t) as E(u, U)

and E(u + L, U) respectively. For a wave propagating in the

positive u direction, E(u, w) and E(u + L, o) are related by

E(u + L, w) = ll(u,w)e-~(o)~, (13)

where

‘-y(w) = cl!(w)+ j/?(w) (14)

is the propagation constant. The effective dielectric constant

Evee is defined as

p(w) = w~m. (15)

From (13) to (15), the effective dielectric constant G.,ff can

be found from

P2
Crefi = —

W2W0 ‘id+’ma’wa)ll’
(16)

where Image is the operator of taking the imaginary part of

a complex number.

Since the strip line in Fig. 8 is surrounded by the uniform

dielectric medium of e, = 4, the effective dielectric constant

C.eff should be the same as c,. However, the numerically com-

puted effective dielectric constant Cr,ff obtained by modeling

a pulse propagation through a strip line is somewhat different

from G-, due to the computation error of the numerical scheme

being used. The dashed curves in Fig. 10 are the computed

effective dielectric constants of the strip line modeled by the

staircase approximation for d = 45°,26.6° (= tan– 1 (1/2)),

18.4° (= tan-l (1/3)), 14.0° (= tan-l (1/4)) and 11.3” (=

tan–l (1/5)). The reason for choosing these particular angles

of O is for the convenience of the staircase approximation of

oblique strip lines as shown in Fig. 9. As can be seen from

Fig. 10, C.eff ’s obtained by the staircase approximation are all

larger than the accurate solution of 4.0, representing slowed

propagation speeds due to the numerical computation error,

and the largest numerical error appears when 19= 45°.

The effective dielectric constants of the strip line approxi-

mated by the locally conformed finite-difference algorithm of

this paper are also shown in Fig. 10 by solid curves. It is

seen that errors in the effective dielectric constants computed

by the locally conformed finite-difference algorithm are about

60~0 to 70~0 smaller than those computed by the staircase

approximation for the angles of O chosen.
As a comparison, a locally conformed finite-difference

algorithm based on a scheme in [8] is also tested. This scheme

H:+l/2(z, j + l,k)=Hyl/2(i, j + l,k) – *[E;(i, j+ l,k) . *

+E:(i, j+2, k) – E;(z, j+ l,k+ 1) –E:(z, j+ l,k)], (11)

H$+qi,j+ 1,/$ – 1) =lr:-1/Z(i,j+ 1,/%– 1) – %[E~(i,j+ l,k - 1)

+E:(i, j+2, k–l)– E;(i, j+l, k). ~- E;(i, j+l, k–1)]. (12)
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TABLE II

COMMUTATIONOF FIELD CoMFoNEwrs NEAR METAL STRLFS

Field components I Group A
to be corrected

1$’W,k)

K“+’’2(W0 equation (2)

E/(i,j + 1,k)

?$’’+’n(i,j+ l,k)

Hy’’+ln(fi~ l>k-1) —

H}+ ’’z(i,j,k) equations
and (3) and (4)

H:+ ’’2(i,j,k-l)

~(i,j+ l,k) .

Hx’’+’n$(#+ l,k)

H:+ ’’2(i,j+l,k-l) —

Group B I Group C I Group D

l— I ~(i,j-l,k)

equation (2) I equation (2) I equation (2)

equations
(3) and (4) I - I‘::;)

*

Group E

~(i,j-l,k)

equation (2)

equation (5)
——

equations

(6) and (7)

equations
(3) and (4)

z

x

L
dl ,//, /

Reference Planes

Fig. 8. Structure of a strip line tilted by an angle @from the x axis. dl = 0.6

mm, d2 = 0.4 mm, Wy = 0.8 mm.

Fig. 9. The staircase approximation of a strip line.

is called the “nearest neighbor approximation” in [8]. With this

method applied to the strip line in Fig. 8, the irregular electric

field components around the metal strip are approximated by

their nearest neighbors of the same field components, and the

4.6

[

0 = 45°

4.5–-––––––––_ ––___–.

I4.4 ——— — —-—------ ———__—_”=,=o

-— - * 8.4.
— — — — ——— —-— ——— —-

4.3
14.09

— — — — — — — ----- ——— --. —
--- -- 11 .3~

-—— —-— -—— ——— 45°

b,, ~,

o 5 10 15 20 25 w

f (GHz)

835

I

I

Fig. 10. Effective dielectric constants of a strip line computed by the stair-
case approximation (dashed curves) and the locally conformed finite-difference
method of thk paper (solid curves). The strip line is along the direction of

an angle 0 with the z axis.

irregular magnetic field components are calculated by applying

the Faraday’s law. The effective dielectric constant e,eff(~) of

the strip line computed by the “nearest neighbor approxima-

tion” are shown in Fig. 11 together with those obtained by

the staircase approximation. It appears that an improvement

on computation accuracy can also be made by the “nearest

neighbor approximation,” but not as much as that by the locally

conformed finite-difference method of this paper.

IV. NUMERICAL EXAMPLE

An example to illustrate the application of the locally

conformed finite-difference algorithm for modeling microwave

circuits is shown in Fig. 12. In this example, two strip lines are



836 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 41, NO. 5, MAY 1993

4.6

[
e = 459

— — — — — —-— ——— ——— ——— -

[
- 26.69— — — — — —.—— ———— ————

— . - a.4’=
— — — — — _—— ——— ——— ——

.+izm= 450

— — —— _—— -—— —— — — — — —
_— - 1 i .30

— — — —-— -—— ——— ——
— ~.e”

~e.40
— 14.0°

i~ 1“””0

4J3 ~
o 5 10 15 20 25 30

f (GHz)

Fig. 11. Effective dielectric constants of a strip line computed by the stair-
case approximation (dashed curves) and the “nearest neighbor approximation”
(solid curves). The strip line is along the direction of an angle @ with the z

axis.

Port 4
/

/F ________

---- -----
Reference Planes

Pori 3

Fig. 12. Structure of two crossed strip lines.

crossed over each other with an angle O. The distance between

two ground planes is 0.9 mm. Three layers of dielectrics

between ground planes are all of thickness 0.3 mm and G. = 4.

The space-step dh of the uniform finite-difference mesh is 0.1

mm. The time-step dt is chosen as 0.5 dh/v. Both metal strips

are of width W = 0.4 mm.

Apparently, for such structures as the ones shown in Fig.

12, the staircase approximation results in very poor resolutions

of circuit geometries. By the application of the locally con-

formed finite-difference method, the numerical analysis of the

dependence of the characteristics of the crossed strip lines on

various parameters, such as the crossing angle 6 and strip-line

dimensions, becomes readily feasible.

The electrical properties of the two crossed strip lines are

obtained by the numerical simulation of a pulse propagation

through the structure. Let a Gaussian pulse propagate into the

structure from port 1. The frequency dependent S parameters

of the structure are found by taking Fourier transforms of the

reflected, transmitted and coupled waves. Fig. 13 shows the

coupling coefficients S13 and S14 in the frequency range f = O

to 15 GHz, as 6 changes from 0° to 45° with a 5° interval.

It is seen that, as expected, S13 increases with increasing 19,

while S14 decreases with increasing 0. Both S13 and S14

increase with frequency in the frequency range of Fig. 13. An

alternative presentation of S13 and S14 is shown in Fig. 14,

where S13 and S14 at various frequencies are plotted as a
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Fig. 13. Coupling coefficients between two crossed strip lines.
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Fig. 14. Coupling coefficients (SI 3 and S14 ) between two crossed

lines. Solid curves: S13; Dashed curves: S14.
strip

function of the crossing angle $.

S parameters obtained above can be post-processed to

extract equivalent circuit parameters of the crossed strip-lines.

For the equivalent circuit model consisted of capacitors CC, C=

and mutual inductor M shown in Fig. 15, it can be derived

that

S13– S14
‘Go = j27rf(l – Sll + &2)’

(17)

where Go is the characteristic admittance of the stip line, and

1 – Sll – S12 – S13– S14
cazo= (18)

~2nf (Slz + S14)(1 + j27r~iWGo) ‘

CCzo= 1 – sll – s12 – j2fif (S12 + j2mfMGoS14)CaZo

j27rf(S12 – S14)(1 – j2xfMGo) ‘

(19)

where Z. is the characteristic impedance of the strip line.

Values of CCZO, C.ZO and MGO as a function of frequency

for different crossing angles are displayed in Figs. 16, 17,

and Fig. 18 respectively. The equivalent circuit model thus

obtained can be used in computer-aided design tools to analyze

crosstalk between strip lines with different terminations.
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Fig. 15. The equivalent circuit of the crossed strip lines in Fig. 12.
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Fig. 16. Normrdized equivalent capacitance Cc 20 of the crossed strip tines

in Fig. 12 as a function of frequency. The crossing angle 9 changes from 0°
to 45° with 5° interval.
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Fig. 17. Normalized equivalent capacitance C. ZO of the crossed strip lines
in Fig. 12 as a function of frequency. The crossing angle 9 changes from 0°
to 45° with 5° irrtervaL

Strip-line crossings appear frequently in microwave circuits,

but few results are available in present literatures on detailed

analysis and modeling of strip-lines crossed with arbitrary

angles. Although the computation results in Figs, 13–18 are

believed to be highly reliable, they are subject to be compared
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Fig. 18. Normalized equivalent inductance A4G0 of the crossed strip lines

in Fig. 12 as a function of frequency. The crossing angle 9 changes from 0°

to 45° with 5° interwaf.

with the results obtained by other numerical or experimental

techniques.

V. CONCLUSION

A locally conformed finite-difference scheme is proposed in

this paper to model arbitrary shape planar metal strips. This

method is computationally more efficient than the globally

conformed finite-difference schemes. Besides the high space-

resolution of this method, it is also shown to be much more

accurate than the staircase approximation. This method can

be applied to various microwave planar circuits of complex

shapes.
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